2025: RAQAMLI DUNYODA MEDIASAVODXONLIK VA AXBOROT MADANIYATI – BARQAROR RIVOJLANISHNING MUHIM OMILI
Maqolalar

JURNALISTIK FAOLIYATDA SUN’IY INTELLEKTNI QO‘LLASH BILAN BOG‘LIQ MEDIASAVODXONLIK ZARURATI

Sanobar DJUMANOVA
‘zbekiston jurnalistika va ommaviy kommunikatsiyalar universiteti

Nashr qilingan 2025-06-20

Kalit so‘zlar

  • sun’iy intellekt,
  • jurnalistika,
  • mediasavodxonlik,
  • dezinformatsiya,
  • neyrotarmoqlar,
  • feyk yangiliklar,
  • axborot xavfsizligi,
  • O‘zbekiston OAV,
  • media texnologiyalar
  • ...Ko'proq
    Kamroq

Izoh

Ushbu maqolada jurnalistik faoliyatda sun’iy intellektdan foydalanish bilan bog‘liq mediasavodxonlik zarurati tahlil qilinadi. Sun’iy intellekt vositalarining axborotni izlash, tahrirlash, tarjima qilish, vizualizatsiya va boshqa sohalardagi imkoniyatlari bilan birga, uning dezinformatsiyani kuchaytirishi mumkinligi alohida e’tiborga olinadi. Kontent tahlil usuli asosida O‘zbekiston ommaviy axborot vositalarida sun’iy intellektdan foydalanish holati o‘rganiladi. Xususan, neyrotarmoqlar asosida tayyorlangan jurnalistik materiallar sonining oshgani, ularning asosiy mazmuni va axborot manbai sifatida AI vositalarining ishtiroki aniqlanadi. Shuningdek, xorijiy tadqiqotlar asosida dezinformatsiya, feyk yangiliklar, axboriy manipulyatsiyalarga qarshi kurashda sun’iy intellekt va media savodxonlikni uyg‘unlashtirish zarurligi asoslanadi. Muallif jurnalistlar uchun tanqidiy tafakkur, axborotni tekshirish, ishonchli manbalarni tanlash ko‘nikmalarini rivojlantirish mediasavodxonlikning eng muhim tarkibiy qismi sifatida qaralishini ta’kidlaydi.

Bibliografik manbalar

  1. Bansal, N., Aljrees, T., Yadav, D. P., Singh, K. U., Kumar, A., Verma, G. K., & Singh, T. (2023). Real-Time Advanced Computational Intelligence for Deep Fake Video Detection. Applied Sciences (Switzerland), 13(5). https://doi.org/10.3390/app13053095
  2. El-Gayar, M. M., Abouhawwash, M., Askar, S. S., & Sweidan, S. (2024). A novel approach for detecting deep fake videos using graph neural network. Journal of Big Data, 11(1). https://doi.org/10.1186/s40537-024-00884-y
  3. Fernandez, A. (2021). “Deep fakes”: disentangling terms in the proposed EU Artificial Intelligence Act. UFITA, 85(2), 392–433. https://doi.org/10.5771/2568-9185-2021-2-392
  4. Iqbal, A., Shahzad, K., Khan, S. A., & Chaudhry, M. S. (2023). The relationship of artificial intelligence (AI) with fake news detection (FND): A systematic literature review. Global Knowledge, Memory and Communication. https://doi.org/10.1108/GKMC-07-2023-0264
  5. Jandrić, P. (2019). The Postdigital Challenge of Critical Media Literacy. The International Journal of Critical Media Literacy, 1(1). https://doi.org/10.1163/25900110-00101002
  6. Mary, A., & Edison, A. (2023). Deep fake Detection using deep learning techniques: A Literature Review. 2023 International Conference on Control, Communication and Computing, ICCC 2023. https://doi.org/10.1109/ICCC57789.2023.10164881
  7. McCosker, A. (2024). Making sense of deepfakes: Socializing AI and building data literacy on GitHub and YouTube. New Media and Society, 26(5). https://doi.org/10.1177/14614448221093943
  8. Pant, S., Gosavi, C., & Barekar, S. (2024). Deep Fake Detection using LSTM and Survey of Deep Fake Creation Technologies. International Journal of Intelligent Systems and Applications in Engineering, 12(6s).
  9. Porlezza, C. (2023). Promoting responsible AI: A European perspective on the governance of artificial intelligence in media and journalism. Communications, 48(3). https://doi.org/10.1515/commun-2022-0091
  10. Ram, R. S., Kumar, M. V., Al-Shami, T. M., Masud, M., Aljuaid, H., & Abouhawwash, M. (2023). Deep Fake Detection Using Computer Vision-Based Deep Neural Network with Pairwise Learning. Intelligent Automation and Soft Computing, 35(2). https://doi.org/10.32604/iasc.2023.030486
  11. Shilina, M. G., Volkova, I. I., Bombin, A. Y., & Smirnova, A. A. (2023). Artificial journalism: the reverse of human-machine communication paradigm. Mapping the field of AI critical media studies. RUDN Journal of Studies in Literature and Journalism, 28(4). https://doi.org/10.22363/2312-9220-2023-28-4-757-768
  12. Stewart, J., Lyubashenko, N., & Stefanek, G. (2023). The efficacy of detecting AI-generated fake news using transfer learning. Issues in Information Systems, 24(2). https://doi.org/10.48009/2_iis_2023_114
  13. Suratkar, S., Bhiungade, S., Pitale, J., Soni, K., Badgujar, T., & Kazi, F. (2023). Deep-fake video detection approaches using convolutional–recurrent neural networks. Journal of Control and Decision, 10(2). https://doi.org/10.1080/23307706.2022.2033644
  14. Tiernan, P., Costello, E., Donlon, E., Parysz, M., & Scriney, M. (2023). Information and Media Literacy in the Age of AI: Options for the Future. Education Sciences, 13(9). https://doi.org/10.3390/educsci13090906
  15. Walker, J., Thuermer, G., Vicens, J., & Simperl, E. (2023). AI Art and Misinformation: Approaches and Strategies for Media Literacy and Fact Checking. AIES 2023 - Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society. https://doi.org/10.1145/3600211.3604715
  16. Washington, J. (2023). Combating Misinformation and Fake News: The Potential of AI and Media Literacy Education. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4580385