JURNALISTIK FAOLIYATDA SUN’IY INTELLEKTNI QO‘LLASH BILAN BOG‘LIQ MEDIASAVODXONLIK ZARURATI
Nashr qilingan 2025-06-20
Kalit so‘zlar
- sun’iy intellekt,
- jurnalistika,
- mediasavodxonlik,
- dezinformatsiya,
- neyrotarmoqlar
- feyk yangiliklar,
- axborot xavfsizligi,
- O‘zbekiston OAV,
- media texnologiyalar ...Ko'proq
Iqtibos keltirish uchun
Izoh
Ushbu maqolada jurnalistik faoliyatda sun’iy intellektdan foydalanish bilan bog‘liq mediasavodxonlik zarurati tahlil qilinadi. Sun’iy intellekt vositalarining axborotni izlash, tahrirlash, tarjima qilish, vizualizatsiya va boshqa sohalardagi imkoniyatlari bilan birga, uning dezinformatsiyani kuchaytirishi mumkinligi alohida e’tiborga olinadi. Kontent tahlil usuli asosida O‘zbekiston ommaviy axborot vositalarida sun’iy intellektdan foydalanish holati o‘rganiladi. Xususan, neyrotarmoqlar asosida tayyorlangan jurnalistik materiallar sonining oshgani, ularning asosiy mazmuni va axborot manbai sifatida AI vositalarining ishtiroki aniqlanadi. Shuningdek, xorijiy tadqiqotlar asosida dezinformatsiya, feyk yangiliklar, axboriy manipulyatsiyalarga qarshi kurashda sun’iy intellekt va media savodxonlikni uyg‘unlashtirish zarurligi asoslanadi. Muallif jurnalistlar uchun tanqidiy tafakkur, axborotni tekshirish, ishonchli manbalarni tanlash ko‘nikmalarini rivojlantirish mediasavodxonlikning eng muhim tarkibiy qismi sifatida qaralishini ta’kidlaydi.
Bibliografik manbalar
- Bansal, N., Aljrees, T., Yadav, D. P., Singh, K. U., Kumar, A., Verma, G. K., & Singh, T. (2023). Real-Time Advanced Computational Intelligence for Deep Fake Video Detection. Applied Sciences (Switzerland), 13(5). https://doi.org/10.3390/app13053095
- El-Gayar, M. M., Abouhawwash, M., Askar, S. S., & Sweidan, S. (2024). A novel approach for detecting deep fake videos using graph neural network. Journal of Big Data, 11(1). https://doi.org/10.1186/s40537-024-00884-y
- Fernandez, A. (2021). “Deep fakes”: disentangling terms in the proposed EU Artificial Intelligence Act. UFITA, 85(2), 392–433. https://doi.org/10.5771/2568-9185-2021-2-392
- Iqbal, A., Shahzad, K., Khan, S. A., & Chaudhry, M. S. (2023). The relationship of artificial intelligence (AI) with fake news detection (FND): A systematic literature review. Global Knowledge, Memory and Communication. https://doi.org/10.1108/GKMC-07-2023-0264
- Jandrić, P. (2019). The Postdigital Challenge of Critical Media Literacy. The International Journal of Critical Media Literacy, 1(1). https://doi.org/10.1163/25900110-00101002
- Mary, A., & Edison, A. (2023). Deep fake Detection using deep learning techniques: A Literature Review. 2023 International Conference on Control, Communication and Computing, ICCC 2023. https://doi.org/10.1109/ICCC57789.2023.10164881
- McCosker, A. (2024). Making sense of deepfakes: Socializing AI and building data literacy on GitHub and YouTube. New Media and Society, 26(5). https://doi.org/10.1177/14614448221093943
- Pant, S., Gosavi, C., & Barekar, S. (2024). Deep Fake Detection using LSTM and Survey of Deep Fake Creation Technologies. International Journal of Intelligent Systems and Applications in Engineering, 12(6s).
- Porlezza, C. (2023). Promoting responsible AI: A European perspective on the governance of artificial intelligence in media and journalism. Communications, 48(3). https://doi.org/10.1515/commun-2022-0091
- Ram, R. S., Kumar, M. V., Al-Shami, T. M., Masud, M., Aljuaid, H., & Abouhawwash, M. (2023). Deep Fake Detection Using Computer Vision-Based Deep Neural Network with Pairwise Learning. Intelligent Automation and Soft Computing, 35(2). https://doi.org/10.32604/iasc.2023.030486
- Shilina, M. G., Volkova, I. I., Bombin, A. Y., & Smirnova, A. A. (2023). Artificial journalism: the reverse of human-machine communication paradigm. Mapping the field of AI critical media studies. RUDN Journal of Studies in Literature and Journalism, 28(4). https://doi.org/10.22363/2312-9220-2023-28-4-757-768
- Stewart, J., Lyubashenko, N., & Stefanek, G. (2023). The efficacy of detecting AI-generated fake news using transfer learning. Issues in Information Systems, 24(2). https://doi.org/10.48009/2_iis_2023_114
- Suratkar, S., Bhiungade, S., Pitale, J., Soni, K., Badgujar, T., & Kazi, F. (2023). Deep-fake video detection approaches using convolutional–recurrent neural networks. Journal of Control and Decision, 10(2). https://doi.org/10.1080/23307706.2022.2033644
- Tiernan, P., Costello, E., Donlon, E., Parysz, M., & Scriney, M. (2023). Information and Media Literacy in the Age of AI: Options for the Future. Education Sciences, 13(9). https://doi.org/10.3390/educsci13090906
- Walker, J., Thuermer, G., Vicens, J., & Simperl, E. (2023). AI Art and Misinformation: Approaches and Strategies for Media Literacy and Fact Checking. AIES 2023 - Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society. https://doi.org/10.1145/3600211.3604715
- Washington, J. (2023). Combating Misinformation and Fake News: The Potential of AI and Media Literacy Education. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4580385